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Abstract—The problem of cross-modal retrieval from mul-
timedia repositories is considered. This problem addresses
the design of retrieval systems that support queries across
content modalities, e.g., using text to search for images. A
mathematical formulation is proposed, equating the design of
cross-modal retrieval systems to that of isomorphic feature
spaces for different content modalities. Two hypothesis are
then investigated, regarding the fundamental attributes of
these spaces. The first is that low-level cross-modal corre-
lations should be accounted for. The second is that the space
should enable semantic abstraction. Three new solutions to
the cross-modal retrieval problem are then derived from these
hypotheses: correlation matching (CM), which models cross-
modal correlations, semantic matching (SM), which relies on
semantic representation, and semantic correlation matching
(SCM), which combines both. An extensive evaluation of
retrieval performance is conducted to test the validity of
the hypotheses. All approaches are shown successful for text
retrieval in response to image queries and vice-versa. It is
concluded that both hypotheses hold, in a complementary
form, although the evidence in favor of the abstraction
hypothesis is stronger than that for correlation.

Index Terms—multimedia, content-based retrieval, multi-
modal, cross-modal, image and text, retrieval model, semantic
spaces, kernel correlation, logistic regression

I. INTRODUCTION

Classical approaches to information retrieval are of a
unimodal nature [25], [36], [40]. Text repositories are
searched with text queries, image databases with image
queries, and so forth. This paradigm is of limited use in the
modern information landscape, where multimedia content
is ubiquitous. Recently, there has been a surge of interest in
multimodal modeling, representation, and retrieval [6], [8],
[18], [32], [39], [42], [44]. Multimodal retrieval relies on
queries combining multiple content modalities (e.g. the im-
ages and sound of a music video-clip) to retrieve database
entries with the same combination of modalities (e.g. other
music video-clips). These efforts have, in part, been spurred
by a variety of large-scale research and evaluation experi-
ments, such as TRECVID [39] and ImageCLEF [32], [44],
involving datasets that span multiple data modalities. How-
ever, much of this work has focused on the straightforward
extension of methods shown successful in the unimodal
scenario. Typically, the different modalities are fused into

a representation that does not allow individual access to any
of them, e.g. some form of dimensionality reduction of a
large feature vector that concatenates measurements from
images and text. Classical unimodal techniques are then
applied to the low-dimensional representation. This limits
the applicability of the resulting multimedia models and
retrieval systems.

In this work, we consider a richer interaction paradigm,
which is denoted cross-modal retrieval. The goal is to
build multimodal content models that enable interactivity
with content across modalities. Such models can then be
used to design cross-modal retrieval systems, where queries
from one modality (e.g. video) can be matched to database
entries from another (e.g., the best accompanying audio-
track). This form of retrieval can be seen as a gener-
alization of current content labeling systems, where one
dominant modality is augmented with simple information
from another, which can be subsequently searched. Ex-
amples include keyword-based image [1], [4], [30] and
song [5] retrieval systems. One property of cross-modal
retrieval is that, by definition, it requires representations
that generalize across content modalities. This implies the
ability to establish cross-modal links between the attributes
(of different modalities) characteristic of each document,
or document class. Detecting these links requires much
deeper content understanding than the classical matching of
unimodal attributes. For example, while an image retrieval
system can retrieve images of roses by matching red blobs,
and a text retrieval system can retrieve texts about roses by
matching the “rose” word, a cross-modal retrieval system
must abstract that the word “rose” matches the visual
attribute “red blob”. This is much closer to what humans
do than simple color or word matching. Hence, cross-modal
retrieval is a better context than unimodal retrieval for the
study of fundamental hypotheses on multimedia modeling.

We exploit this property to study two hypotheses on the
joint modeling of images and text. The first, denoted the
correlation hypothesis, is that explicit modeling of low-
level correlations between the different modalities is of
importance for the success of the joint models. The second,
denoted the abstraction hypothesis, is that the modeling
benefits from semantic abstraction, i.e. the representation
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of images and text in terms of semantic (rather than low-
level) descriptors. These hypotheses are partly motivated by
previous evidence that correlation, e.g., correlation analysis
on fMRI [16], and abstraction, e.g., hierarchical topic
models for text clustering [2] or hierarchical semantic repre-
sentations for image retrieval [35], improve performance on
unimodal retrieval tasks. Three joint image-text models that
exploit low-level correlation, denoted correlation matching,
semantic abstraction, denoted semantic matching, and both,
denoted semantic correlation matching, are introduced.

The correlation and abstraction hypotheses are then
tested by measuring the retrieval performance of these
models on two reciprocal cross-modal retrieval tasks: 1)
the retrieval of text documents in response to a query
image, and 2) the retrieval of images in response to a
query text. These are basic cross-modal retrieval problems,
central to many applications of practical interest, such as
finding pictures that effectively illustrate a given text (e.g.,
to illustrate a page of a story book), finding the texts
that best match a given picture (e.g., a set of vacation
accounts about a given landmark), or searching using a
combination of text and images. Model performance on
these tasks is evaluated with two datasets: TVGraz [21]
and a novel dataset based on Wikipedia’s featured articles.
These experiments show independent benefits to both cor-
relation modeling and abstraction. In particular, best results
are obtained by a model that accounts for both low-level
correlations — by performing a kernel canonical correlation
analysis (KCCA) [37], [47] — and semantic abstraction
— by projection of images and texts into a common
semantic space [35] designed with logistic regression. This
suggests that the abstraction and correlation hypotheses are
complementary, each improving the modeling in a different
manner. Individually, the gains of abstraction are larger than
those of correlation modeling.

The paper is organized as follows. Section II discusses
previous work in multimodal and cross-modal multimedia
modeling. Section III presents a mathematical formulation
for cross-modal modeling and discusses the two fundamen-
tal hypotheses analyzed in this work. Section IV introduces
the models underlying correlation, semantic, and semantic
correlation matching. Section V discusses the experimental
setup used to evaluate the hypotheses. Model validation
and parameter tunning are detailed in Section VI. The
hypotheses are finally tested on Section VII and conclusions
presented in Section VIII. A preliminary version of this
work appeared in [34].

II. PREVIOUS WORK

The problems of image and text retrieval have been the
subject of extensive research in the fields of information
retrieval, computer vision, and multimedia [6], [28], [32],
[39], [40]. In all these areas, the emphasis has been on
unimodal approaches, where query and retrieved documents
share a single modality [6], [40], [45]. This is not effective
for all problems. For example, the existence of a well
known semantic gap, between current image representa-
tions and those adopted by humans, severely limits the

performance of unimodal image retrieval systems [40]. In
general, successful retrieval from large-scale image col-
lections requires that the latter be augmented with text
metadata provided by human annotators. These manual
annotations are typically in the form of a few keywords,
a small caption, or a brief image description [32], [39],
[44]. When this metadata is available, the retrieval operation
tends to be unimodal and ignore the images — a text
query is simply matched to the available text metadata.
Because manual image labeling is labor-intensive, recent
research has addressed the problem of automatic image
labeling [1], [4], [12], [19], [23], [29]. Although not com-
monly perceived as multi-modal, these systems support
cross-modal retrieval, by returning images in response to
text queries. However, the ability to bridge the gap between
the two modalities is limited, since all queries are restricted
to the keywords in the concept vocabulary used to train
the image labeling system. These vocabularies are usually
small, rarely containing more than a few hundred words.

A solution to this problem is to design a semantic
space, where each dimension is a semantic concept [35],
[41]. Statistical models of the distribution of low-level
image features are first learned for each of the concepts
in the vocabulary. The probability of the features extracted
from each image, under each of the concept models, is
then computed. Bayes rule is finally used to compute the
posterior probabilities of the image under each concept, and
the image is represented by the vector of these posterior
concept probabilities. As illustrated in Figure 1, this can be
seen as a semantic image descriptor, which maps the image
into a semantic feature space. This descriptor is commonly
denoted as a semantic multinomial (SMN) distribution. All
standard image analysis/classification tasks can then be
conducted in semantic space, at a higher level of abstrac-
tion than that supported by low-level feature spaces. For
example, image retrieval can be formulated as retrieval by
semantic similarity, by combining the semantic space with
a suitable similarity function [35]. This allows assessments
of image similarity in terms of weighted combinations of
vocabulary words, and substantially extends the range of
concepts that can effectively be retrieved. It also increases
the subjective quality of the retrieval results, even when the
retrieval system makes mistakes, since images are retrieved
by similarity of their content semantics rather than plain
visual similarity [46].

In parallel, advances have been reported in the area
of multi-modal retrieval systems [6], [8], [18], [32], [39],
[42], [44]. These are extensions of the classic unimodal
systems, where a common retrieval system integrates in-
formation from various modalities. This can be done by
fusing features from different modalities into a single
vector [10], [33], [50], or by learning different models
for different modalities and fusing their predictions [22],
[49]. One popular approach is to 1) concatenate features
from different modalities into a common vector and 2)
rely on unsupervised structure discovery algorithms, such
as latent semantic analysis (LSA), to find statistical patterns
that span the different modalities. A good overview of
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Fig. 1. Image representation in semantic space. Images are decomposed into bags-of-features. A vocabulary of visual concepts establishes the
dimensions of the semantic space. A model of the feature distribution is learned for each concept. Each image is finally represented by the vector of
posterior concept probabilities, given its features.

these methods is given in [10], which also discusses the
combination of unimodal and multimodal retrieval systems.
Multimodal integration has also been applied to retrieval
tasks including audio-visual content [13], [31]. In general,
the inability to access each data modality individually (after
the fusion of modalities) limits the applicability of these
systems to cross-modal retrieval.

Recently, there has been progress towards multimodal
systems that do not suffer from this limitation. These
include retrieval methods for corpora of images and text [8],
images and audio [24], [53], text and audio [38], or images,
text, and audio [51]–[55]. One popular approach is to rely
on graph-based manifold learning techniques [51]–[55].
These methods learn a manifold from a matrix of distances
between multimodal objects. Retrieval then consists of find-
ing the nearest document, on the manifold, to a multimedia
query. The main limitation of methods in this class is
the lack of out-of-sample generalization. Since there is no
computationally efficient way to project the query into the
manifold, queries are restricted to the training set used to
learn the latter. Hence, all unseen queries must be mapped
to their nearest neighbors in this training set, defeating the
purpose of manifold learning. An alternative solution is to
learn correlations between different modalities [24], [48],
[53]. For example, [24] compares canonical correlation
analysis (CCA) and cross-modal factor analysis (CFA) in
the context of audio-image retrieval. Both CCA and CFA
perform a joint dimensionality reduction that extracts highly
correlated features in the two data modalities. A kernelized
version of CCA was also proposed in [48] to extract
translation invariant semantics of text documents written in
multiple languages. It was later used to model correlations
between web images and corresponding captions, in [16].

Despite these advances in multi-modal modeling, current
approaches tend to rely on a limited textual representation,
in the form of keywords, captions, or small text snippets.
This is at odds with the ongoing explosion of multimedia
content on the web, where it is now possible to collect large
sets of extensively annotated data. Examples include news
archives, blog posts, or Wikipedia pages, where pictures are
related to complete text articles, not just a few keywords.
We refer to these datasets as richly annotated. While

potentially more informative, rich annotation establishes
a much more nuanced connection between images and
text than that of light annotation, weakening the one-to-
one mapping between textual words and class labels. For
example, Figure 2 shows a section of the Wikipedia article
on the “Birmingham campaign”, along with the associated
image. Notice that, although related to the text, the image
is clearly not representative of all the words in the article.
The same is true for the web-page in Figure 3, from the
TVGraz dataset [21]. This is a course syllabus that, beyond
the pictured brain, includes course information and other
unrelated matters. A major long-term goal of modeling
richly annotated data is to recover this latent relationship
between the text and image components of a document, and
exploit it in benefit of practical applications.

III. FUNDAMENTAL HYPOTHESES

In this section, we present a novel multi-modal content
modeling framework, which is flexible and applicable to
rich content modalities. Although the fundamental ideas are
applicable to any combination of modalities we restrict the
discussion to documents containing images and text.

A. The problem

We consider the problem of information retrieval from
a database D = {D1, . . . , D|D|} of documents comprising
image and text components. In practice, these documents
can be quite diverse: from documents where a single text
is complemented by one or more images (e.g., a newspa-
per article) to documents containing multiple pictures and
text sections (e.g., a Wikipedia page). For simplicity, we
consider the case where each document consists of a single
image and its accompanying text, i.e. Di = (Ii, Ti). Images
and text are represented as vectors on feature spaces ℜI

and ℜT , respectively, as illustrated in Figure 4. In this way,
documents establish a one-to-one mapping between ℜI and
ℜT . Given a text (image) query Tq ∈ ℜT (Iq ∈ ℜI ), the
goal of cross-modal retrieval is to return the closest match
in the image (text) space ℜI (ℜT ).
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Martin Luther King’s presence in Birmingham was not welcomed by all in the black community. A black attorney was quoted in ”Time” magazine as saying, ”The new
administration should have been given a chance to confer with the various groups interested in change.” Black hotel owner A. G. Gaston stated, ”I regret the absence of
continued communication between white and Negro leadership in our city.” A white Jesuit priest assisting in desegregation negotiations attested, ”These demonstrations
are poorly timed and misdirected.” Protest organizers knew they would meet with violence from the Birmingham Police Department but chose a confrontational
approach to get the attention of the federal government. Reverend Wyatt Tee Walker, one of the SCLC founders and the executive director from 19601964, planned the
tactics of the direct action protests, specifically targeting Bull Connor’s tendency to react to demonstrations with violence. ”My theory was that if we mounted a strong
nonviolent movement, the opposition would surely do something to attract the media, and in turn induce national sympathy and attention to the everyday segregated
circumstance of a person living in the Deep South,” Walker said. He headed the planning of what he called Project C, which stood for ”confrontation”. (...)

Fig. 2. A section from the Wikipedia article on the Birmingham campaign, belonging to the “History” category.

Home - Courses - Brain and Cognitive Sciences - A Clinical Approach to the Human Brain 9.22J / HST.422J A Clinical Approach to the Human Brain Fall 2006
Activity in the highlighted areas in the prefrontal cortex may affect the level of dopamine in the mid-brain, in a finding that has implications for schizophrenia. (Image
courtesy of the National Institutes of Mental Health.) Course Highlights This course features summaries of each class in the lecture notes section, as well as an extensive
set of readings. Course Description This course is designed to provide an understanding of how the human brain works in health and disease, and is intended for both
the Brain and Cognitive Sciences major and the non-Brain and Cognitive Sciences major. Knowledge of how the human brain works is important for all citizens, and
the lessons to be learned have enormous implications for public policy makers and educators. The course will cover the regional anatomy of the brain and provide an
introduction to the cellular function of neurons, synapses and neurotransmitters. Commonly used drugs that alter brain function can be understood through a knowledge
of neurotransmitters. Along similar lines, common diseases that illustrate normal brain function will be discussed. (...)

Fig. 3. Part of a document-image pair from the TVGraz dataset, in the “brain” category.

Text SpaceImage Space R
I

R
TText Space

Like most of the UK, the Manchester area

mobilised extensively during World War II. For

example, casting and machining expertise at

Beyer, Peacock and Company's locomotive

works in Gorton was switched to bomb making;

Dunlop's rubber works in Chorlton on Medlock

Image Space R R

made barrage balloons;
Martin Luther King's presence in Birmingham

was not welcomed by all in the black

community. A black attorney was quoted in

''Time'' magazine as saying, "The new

administration should have been given a chance

to confer with the various groups interested in

change. …

In 1920, at the age of 20, Coward starred in his

own play, the light comedy ''I'll Leave It to You''.

After a tryout in Manchester, it opened in

Multimodal Documents

y p

London at the New Theatre (renamed the Noël

Coward Theatre in 2006), his first full length play

in the West End.Thaxter, John. British Theatre

Guide, 2009 Neville Cardus's praise in ''The

Manchester Guardian''

Fig. 4. Each document consists of an image and accompanying text, i.e. Di = (Ii, Ti), which are represented as vectors on feature spaces ℜI and
ℜT , respectively. Documents establish a one-to-one mapping between points in ℜI and ℜT .

B. Multi-modal modeling

Whenever the image and text spaces have a natural
correspondence, cross-modal retrieval reduces to a classical
retrieval problem. Let

M : ℜT → ℜI

be an invertible mapping between the two spaces. Given a
query Tq in ℜT , it suffices to find the nearest neighbor to
M(Tq) in ℜI . Similarly, given a query Iq in ℜI , it suffices
to find the nearest neighbor to M−1(Iq) in ℜT . In this case,
the design of a cross-modal retrieval system reduces to the
design of an effective similarity function for determining
the nearest neighbors.

In general, however, different representations are adopted
for images and text, and there is no natural correspondence
between ℜI and ℜT . In this case, the mapping M has to
be learned from examples. In this work, we map the two
representations into intermediate spaces, VI and VT , that
have a natural correspondence. Let

MI : ℜI → VI MT : ℜT → VT

be invertible mappings from each of the image and text
spaces to two isomorphic spaces VI and VT such that there
is an invertible mapping

M : VT → VI .

Given a query Tq in ℜT , cross-modal retrieval reduces to
finding the nearest neighbor of

M−1
I ◦M ◦MT (Tq)

in ℜI . Similarly, given a query Iq in ℜI , the goal is to find
the nearest neighbor of

M−1
T ◦M−1 ◦MI(Iq)

in ℜT . Under this formulation, the main problem in the
design of a cross-modal retrieval system is the design of
the intermediate spaces VI and VT .

C. The fundamental hypotheses

Since the goal is to design representations that generalize
across content modalities, the solution of this problem re-
quires some ability to derive a more abstract representation
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than the sum of the parts (low-level features) extracted
from each content modality. Given that such abstraction
is the hallmark of true image or text understanding, this
problem enables the exploration of some central questions
in multimedia modeling. While 1) a unimodal retrieval
system can successfully retrieve images of “swans” because
they are the only white objects in the database, 2) a text
retrieval system can successfully retrieve documents about
“swans” because they are the only containing the “swan”
word, and 3) a multimodal retrieval system can just match
“white” to “white” and “swan” to “swan”, a cross-modal
retrieval system cannot solve the task without abstracting
that “white is a visual attribute of swan”. Hence, cross-
modal retrieval is a more effective paradigm for testing
fundamental hypotheses in multimedia representation than
unimodal or multimodal retrieval. In this work, we exploit
the cross-model retrieval problem to objectively test two
such hypotheses, regarding the joint modeling of images
and text.

• H1 (correlation hypothesis): low-level cross-modal
correlations are important for joint image-text mod-
eling.

• H2 (abstraction hypothesis): semantic abstraction is
important for joint image-text modeling.

The hypotheses are tested by comparing three possi-
bilities for the design of the intermediate spaces VI and
VT of cross-modal retrieval. In the first case, two fea-
ture transformations map ℜI and ℜT onto correlated d-
dimensional subspaces denoted as UI and UT , respectively,
which act as VI and VT . This maintains the level of se-
mantic abstraction of the representation while maximizing
the correlation between the two spaces. We refer to this
matching technique as correlation matching (CM). In the
second case, a pair of transformations are used to map the
image and text spaces into a pair of semantic spaces SI

and ST , which then act as VI and VT . This increases the
semantic abstraction of the representation without directly
seeking correlation maximization. The spaces SI and ST

are made isomorphic by using the same set of semantic
concepts for both modalities. We refer to this as semantic
matching (SM). Finally, a third approach combines the
previous two techniques: project onto maximally correlated
subspaces UI and UT , and then project again onto a pair
of semantic spaces SI and ST , which act as VI and VT .
We refer to this as semantic correlation matching (SCM).

Table I summarizes which hypotheses hold for each of
the three approaches. The comparative evaluation of the
performance of these approaches on cross-modal retrieval
experiments provides indirect evidence for the importance
of the above hypotheses to the joint modeling of images
and text. The intuition is that when important hypotheses
are met, the resulting models are more effective, and cross-
modal retrieval performance improves.

IV. CROSS-MODAL RETRIEVAL

In this section, we present each of the three approaches
in detail.

TABLE I
TAXONOMY OF THE PROPOSED APPROACHES TO CROSS-MODAL

RETRIEVAL.

correlation hypothesis abstraction hypothesis
CM

√

SM
√

SCM
√ √

A. Correlation matching (CM)

The design of a mapping from ℜT and ℜI to the
correlated spaces UT and UI requires a combination of
dimensionality reduction and some measure of correlation
between the text and image modalities. In both text and
vision literatures, dimensionality reduction is frequently ac-
complished with methods such as latent semantic indexing
(LSI) [7] and principal component analysis (PCA) [20].
These are members of a broader class of learning algo-
rithms, denoted subspace learning, which are computation-
ally efficient, and produce linear transformations that are
easy to conceptualize, implement, and deploy. Furthermore,
because subspace learning is usually based on second order
statistics, such as correlation, it can be easily extended
to the multimodal setting and kernelized. This has mo-
tivated the introduction of a number of multimodal sub-
space methods in the literature. In this work, we consider
cross-modal factor analysis (CFA), canonical correlation
analysis (CCA), and kernel canonical correlation analysis
(KCCA). All these methods include a training stage, where
the subspaces UI and UT are learned, followed by a
projection stage, where images and text are projected into
these spaces. Figure 5 illustrates this process. Cross-modal
retrieval is finally performed within the low-dimensional
subspaces.

1) Linear subspace learning: CFA [24] finds the or-
thonormal transformations ΩI and ΩT that project the two
modalities onto the shared space, UI = UT = U , where
the projections have minimum distance∥∥XIΩI −XTΩT

∥∥2
F
. (1)

XI and XT are matrices containing corresponding features
from the image and text domains, and || · ||2F is the
Frobenius norm. It can be shown that this is equivalent
to maximizing

trace(X ′
IXT ) (2)

and the optimal matrices ΩI ,ΩT can be obtained by a
singular value decomposition of the matrix X ′

IXT [24],

X ′
IXT = ΩIΛΩT (3)

where Λ is the matrix of singular values of X ′
IXT .

CCA [17] learns the d-dimensional subspaces UI ⊂ ℜI

(image) and UT ⊂ ℜT (text) where the correlation between
the two data modalities is maximal. It is similar to principal
components analysis (PCA), in the sense that it learns a
basis of canonical components, directions wi ∈ ℜI and
wt ∈ ℜT , but seeks directions along which the data is
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Fig. 5. Correlation matching (CM) performs joint feature selection in the text and image spaces, projecting them onto two maximally correlated
subspaces UT and UI .

maximally correlated

max
wi ̸=0, wt ̸=0

w′
iΣITwt√

w′
iΣIwi

√
w′

tΣTwt

, (4)

where ΣI and ΣT are the empirical covariance matrices for
images {I1, . . . , I|D|} and text {T1, . . . , T|D|} respectively,
and ΣIT = Σ′

TI the cross-covariance between them. The
canonical components in the image space are the eigen-
vectors of Σ−1/2

I ΣITΣ
−1
T ΣTIΣ

−1/2
I , and in the text space

the eigenvectors of Σ
−1/2
T ΣTIΣ

−1
I ΣITΣ

−1/2
T . The first d

eigenvectors {wi,k}dk=1 and {wt,k}dk=1 define a basis of the
subspaces UI and UT .

2) Non-linear subspace learning: CCA and CFA can
only model linear dependencies between image and text
features. This limitation can be avoided by mapping these
features into high-dimensional spaces, with a pair of non-
linear transformations ΦT : ℜT → FT and ΦI : ℜI →
FI . Application of CFA or CCA in these spaces can
then recover complex patterns of dependency in the orig-
inal feature space. As is common in machine learning,
the transformations ΦT (·) and ΦI(·) are computed only
implicitly, by the introduction of two kernel functions
KT (·, ·) and KI(·, ·), whose ranges are inner product
spaces such that KT (Tm, Tn) = ⟨ϕ(Tm), ϕ(Tn)⟩ respec-
tively KI(Im, In) = ⟨ϕ(Im), ϕ(In)⟩.

KCCA [37], [47] implements this type of extension for
CCA, seeking directions wi ∈ FI and wt ∈ FT , along
which the two modalities are maximally correlated, i.e.
wi = ΦI(XI)

Tαi and wt = ΦT (XT )
Tαt. This is shown in

equation (5). Where κ ∈ [0, 1] is a regularization factor, KI

and KT are the kernel matrices of the two representations,
e.g., (KI)mn = KI(Im, In), and ΦT (XT ) (ΦI(XI)) is the
matrix whose rows contain the high-dimensional image of
the text (image) features. In our implementation, the opti-
mal (αi, αt) are learned with the software package of [47].
The first d solutions, {αi,k}dk=1 and {αt,k}dk=1, are weight
vectors for the linear combination of the training examples
{ϕI(Ik)}|D|

k=1, and {ϕT (Tk)}|D|
k=1, so as to form the bases

{wi,k}dk=1, and {wt,k}dk=1, of the two maximally correlated
d-dimensional subspaces UI ⊂ FI and UT ⊂ FT , where
1 ≤ d ≤ |D|.

3) Image and text projections: Images and text are
represented by their projections into subspaces UI and UT .

For CFA and CCA, these are dot-products pI between
image features xI and image basis vectors, and pT between
text features xT and text basis vectors. For CFA, basis
vectors are the columns of ΩI ,ΩT , for CCA they are the
eigenvectors {wi,k}dk=1, {wt,k}dk=1. In the case of KCCA,
an image is mapped to its projection pI = PI(ϕI(I)) onto
{wi,k}dk=1 with

pI,k = ⟨ϕI(I), wi,k⟩
= ⟨ϕI(I),

[
ϕI(I1), . . . , ϕI(I|D|)

]
αi,k⟩

=
[
KI (I, I1) , . . . , KI

(
I, I|D|

)]
αi,k,

(6)

where k = 1, . . . , d. Analogously, a text T ∈ ℜT

is mapped into its projection pT = PT (ϕT (T )) onto
{wt,k}dk=1, using KT (. , .).

4) Correlation matching: For all methods, a natural
invertible mapping between the projections onto UI and
UT follows from the correspondence between the d-
dimensional bases of the subspaces, as wi,1 ↔ wt,1, ...,
wi,d ↔ wt,d. This results in a compact, efficient repre-
sentation of both modalities, where vectors pT and pI are
coordinates in two isometric d dimensional subspaces, as
shown in Figure 5. Given an image query I with projection
pI , the text T ∈ ℜT that most closely matches it is that for
which pT minimizes

D(I, T ) = d(pI , pT ) (7)

for some suitable distance of measure d(·, ·) in a d-
dimensional vector space. Similarly, given a query text T
with projection pT , the closest image match I ∈ ℜI is
that for which pI minimizes d(pI , pT ). An illustration of
cross-modal retrieval using CM is given in Figure 7(a).

B. Semantic matching (SM)

An alternative to subspace learning is to represent doc-
uments at a higher level of abstraction, so that there
is a natural correspondence between the text and image
spaces. This is obtained by augmenting the database D
with a vocabulary V = {v1, . . . , vK} of semantic concepts,
such as “History” or “Biology”. Individual documents are
grouped into these classes. Two mappings LT and LI

are then implemented using classifiers of text and images,
respectively. LT maps a text T ∈ ℜT into a vector of
posterior probabilities PV |T (vj |T ), j ∈ {1, . . . ,K} with
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max
αi ̸=0, αt ̸=0

α′
iKIKTαt√

(1− κ)α′
iK

2
Iαi + κα′

iKIαi

√
(1− κ)α′

tK
2
Tαt + κα′

tKTαt

, (5)

Fig. 6. Semantic matching (SM) maps text and image features onto a semantic space. Classifiers for the text (image) modality are used to represent
text (image) as semantic text (image) descriptors, i.e., weight vectors over semantic concepts.

respect to each of the classes in V . The space ST of
these vectors is referred to as the semantic space for text,
and the probabilities PV |T (vj |T ) as semantic text features.
Similarly, LI maps image I into a vector of semantic image
features PV |I(vj |I), j ∈ {1, . . . ,K} in a semantic image
space SI .

Semantic models have two advantages for cross-modal
retrieval. First, they provide a higher level of abstraction.
While standard features in ℜT and ℜI are the result of
unsupervised learning, and frequently have no obvious
interpretation (e.g. image features tend to be edges, edge
orientations or frequency bases), the features in SI and
ST are semantic concept probabilities (e.g. the probability
that the image belongs to the “History” or “Biology”
document classes). Previous work has shown that this
increased semantic abstraction can lead to substantially
better generalization for tasks such as image retrieval [35].
Second, the semantic spaces SI and ST are isomorphic: in
both cases, images and text are represented as vectors of
posterior probabilities with respect to the same document
classes. Hence, the spaces can be treated the same, i.e.
ST = SI , leading to the schematic representation of
Figure 6.

In this work, the posterior probability distributions are
computed through multi-class logistic regression. This pro-
duces a linear classifier with a probabilistic interpretation.
Logistic regression computes the posterior probability of
class j, by fitting image or text features to a logistic
function,

PV |X(j|x;w) = 1

Z(x,w)
exp (w′

jx) (8)

where Z(x,w) =
∑

j exp (w
′
jx) is a normalization con-

stant, V the class label, X the vector of features in the
input space, and w = {w1, . . . , wK}, with wj a vector of
parameters for class j. A multi-class logistic regression is
learned for the text and image modalities, by making X
the image and text representation I ∈ ℜI and T ∈ ℜT

respectively. In our implementation we use the software
package Liblinear [11]. Given a query image I (text T ),
represented by a probability vector πI ∈ SI (πT ∈ ST ),
retrieval consists of finding the text T (image I), repre-
sented by a probability vector πT ∈ ST (πI ∈ SI ), that
minimizes

D(I, T ) = d(πI , πT ), (9)

for some suitable distance measure d between probability
distributions. An illustration of cross-modal retrieval using
SM is given in Figure 7(b).

C. Semantic Correlation Matching (SCM)

Although CM and SM operate on different principles,
they are not mutually exclusive. In fact, a corollary to
the two hypotheses discussed above is that there may a
benefit in combining CM and SM. CM extracts maximally
correlated features from ℜT and ℜI . SM builds semantic
spaces using original features to gain semantic abstraction.
When the two are combined, by building semantic spaces
using the feature representation produced by correlation
maximization, it may be possible to improve on the individ-
ual performances of both CM and SM. To combine the two
approaches, the maximally correlated subspaces UI ⊂ FI

and UT ⊂ FT are first learned with correlation modeling.
Logistic regressors LI and LT are then learned in each
of these subspaces to produce the semantic spaces SI and
ST , respectively. Retrieval is finally based on the image-text
distance D(I, T ) of (9), based on the semantic mappings
πI = LI(PI(ϕI(I))) and πT = LT (PT (ϕT (T ))) after
projecting onto UI and UT respectively.

V. EXPERIMENTAL SETUP

In this section, we describe an extensive experimental
evaluation of the proposed framework. Two tasks were
considered: text retrieval from an image query, and image
retrieval from a text query. The cross-modal retrieval perfor-
mance is measured with precision-recall (PR) curves and
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Fig. 7. Cross-modal retrieval using CM and SM. On the left, CM is used to find the images that best match a query text. On the right, SM is used
to find the texts that best match a query image.

mean average precision (MAP) scores. The standard 11-
point interpolated PR curves [27] are used. The MAP score
is the average precision at the ranks where recall changes.
Both metrics are evaluated at the level of in- or out-of-
category, which is a popular choice in the information
retrieval literature [35]. We start by detailing the datasets
used in the experiments.

A. Datasets

The evaluation of a cross-modal retrieval system requires
a dataset which pairs pictures to rich text. While many
datasets have been proposed in the literature for either of
these modalities, few are rich in both modalities. In this
work, we focus on two datasets, the “Text and Vision
Graz” dataset collected by Khan et at [21], and a novel
dataset composed of Wikipedia’s featured articles [34]. In
the following, we refer to these datasets as TVGraz and
Wikipedia.

1) TVGraz: The TVGraz dataset is a collection of web-
pages compiled by Khan et al [21]. The Google Image
search engine was used to retrieve 1, 000 web-pages for
each of ten categories from the Caltech-256 [15] dataset.
The results were filtered into a set of 2, 592 positive web-
pages, containing both text and image data, for which the
image belonged to the query category. Due to copyright
issues, the TVGraz database is stored as a list of URLs,
and must be recompiled by each new user. We collected
2, 058 image-text pairs, since some URLs were defunct and
we discarded web-pages that did not contain at least 10
words and one image. The median text length, per web-
page, is 289 words. A random split was used to produce
1, 558 training and 500 test documents, as summarized in
Table II.

2) Wikipedia: A novel dataset was assembled from
the “Wikipedia featured articles”, a continually updated
collection of Wikipedia articles, which contained 2, 669
entries when the data was collected, in October 2009.
These articles, which are selected and reviewed for style
and quality by Wikipedia’s editors, are often accompanied
by one or more pictures from the Wikimedia Commons,
supplying a text-image pairing. The Wikipedia featured
articles are divided into 29 categories, but some contain

very few entries. We considered only articles from the 10
most populated categories, which were used as a semantic
vocabulary. Since the featured articles tend to have multiple
images and span multiple topics, each article was split
into sections, based on its section headings. Each image
was assigned to the section in which it was placed by the
author(s). This produced a total of 7, 114 sections, which
are internally more coherent and usually contain a single
picture. The dataset was then pruned, by keeping only
sections with exactly one image and at least 70 words.
The final corpus contains a total of 2, 866 documents. The
median text length is 200 words. A random split was used
to produce a training set of 2, 173 documents and a test set
of 693 documents, as summarized in Table III.

Dataset Comparison: The two datasets have important
differences. On TVGraz, the images are archetypal mem-
bers of the categories, due to the collection procedure [21].
The dataset is imminently visual, since its categories (e.g.,
“Harp”, “Dolphin”) are specific objects or animals, and
the classes are semantically well-separated, with little or
no semantic overlap. However, the texts are small and can
be less representative of the categories to which they are
associated. For example, the syllabus of a Neuroscience
class can be attached to a picture of a brain. In Wikipedia,
on the other hand, the category membership is assessed
based on text content. Hence, texts are mostly of good-
quality and representative of the category, while the image
categorization is more ambiguous. For example, a portrait
of an historical figure can appear in the class “War”.
The Wikipedia categories (e.g., “History”, “Biology”) are
more abstract concepts, and have much broader scope.
Frequently, documents can be classified into one or more
categories. Individually, the images can be difficult to
classify, even for a human. Together, the two datasets
represent an important subset of the diversity of practical
cross-modal retrieval scenarios: applications where there is
more uniformity of text than images, and vice-versa.

B. Image and text representation

The base representation of the two modalities is the bag-
of-words (BOW). Text words were obtained by stemming
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TABLE II
SUMMARY OF THE TVGRAZ

DATASET.

Category Training set Test set Total
Validation

Brain 109 32 47 156
Butterfly 195 39 51 246
Cactus 137 27 37 174
Deer 223 51 51 274
Dice 169 36 50 219

Dolphin 163 24 59 222
Elephant 120 22 54 174

Frog 215 35 67 282
Harp 131 27 42 173
Pram 96 20 42 138
total 1558 (313) 500 2058

TABLE III
SUMMARY OF THE WIKIPEDIA

DATASET

Category Training set Test set Total
Validation

Art & architecture 138 29 34 172
Biology 272 50 88 360

Geography & places 244 50 96 340
History 248 54 85 333

Literature & theatre 202 37 65 267
Media 178 32 58 236
Music 186 35 51 237

Royalty & nobility 144 44 41 185
Sport & recreation 214 41 71 285

Warfare 347 63 104 451
total 2173 (435) 693 2866

the text with the Python Natural Language Toolkit1. Direct
word histograms was unsuitable for text because the large
lexicon made the correlation analysis intractable. Instead, a
latent Dirichlet allocation (LDA) [2] model was learned
from the text features, using the implementation of [9].
LDA summarizes a document as a mixture of topics. More
precisely, a text is modeled as a multinomial distribution
over topics, each of which is in turn modeled as a multi-
nomial distribution over words. Each word in a text is
generated by first sampling a topic from the document-
specific topic distribution, and then sampling a word from
that topic’s multinomial. This serves two purposes; it
reduces dimensionality and increases feature abstraction,
by converting documents from distributions over words to
distributions over topics.

Image words were learned with the scale invariant feature
transformation (SIFT) [26]. A bag of SIFT descriptors
was first extracted from each image in the training set,
using the SIFT implementation of LEAR2. A codebook,
or dictionary of visual words was then learned with the K-
means clustering algorithm. The SIFT descriptors extracted
from each image were vector quantized with this codebook,
producing a vector of visual word counts per image. For

1http://www.nltk.org/
2https://lear.inrialpes.fr/people/dorko/downloads.html

compatibility with the text, we also considered a lower-
dimensional representation, by fitting an LDA model to
visual word histograms. Preliminary experiments indicated
that this outperformed a principal component analysis
(PCA). In all experiments, model parameters were learned
with cross-validation, using a random split of 80% - 20%
of the training set, for training and validation respectively.
In TVGraz, the training set (1, 558) was divided into 1, 245
training and 313 validation examples. In Wikipedia (2, 173)
the split was made at 1, 738 training and 435 validation
documents. Codebook sizes ranged from 128 to 8, 192
visual words. LDA models were learned with a number
of topics ranging from 5 to 4, 000.

VI. PARAMETER SELECTION

The combination of three retrieval modes (CM, SM, and
SCM), three correlation matching approaches (CFA, CCA,
KCCA), two image representations (BOW, LDA), and
various distance measures generates a large number of pos-
sibilities for the implementation of cross-modal retrieval.
Since each configuration has a number of parameters to
tune, it is difficult to perform an exhaustive comparison
of all possibilities. Instead, we pursued a sequence of
preliminary comparisons, on the validation set, to prune the
configuration space. The top performing approaches were
then compared on the test set, as explained in the following
section.

1) Distance Measures: We started by comparing a num-
ber of distance measures, for the evaluation of (7) and (9),
in CM, SM, and SCM retrieval experiments. The subspaces
used for CM were produced by KCCA. The measures
are listed in Table IV, and include the Kullback-Leibler
divergence (KL), ℓ1 and ℓ2 norms, normalized correlation
(NC), and centered normalized correlation (NCc). The KL
divergence was not used with CM because this technique
does not produce a probability simplex. Table IV presents
the MAP scores achieved with each measure, on the vali-
dation set. NCc achieved the best average performance in
all experiments other than CM-based retrieval on TVGraz,
where it was outperformed by NC. Since the difference
was small even in this case, NCc was adopted as distance
measure in all remaining experiments.

2) Text and image representation: Due to the intractabil-
ity of word counts, we considered only the LDA represen-
tation for text. For each experiment – CM, SM, SCM –
and dataset – TVGraz, Wikipedia – the number of topics
with maximum retrieval performance, on the validation
set, was adopted. This is detailed in Table VII. In the
image domain, we compared the performance of the BOW
and LDA representations, using an SCM system based on
KCCA subspaces. Figure 8 presents the MAP scores for
both text and image queries on TVGraz and Wikipedia.
Since the retrieval performance of LDA was inferior to that
of BOW, for all topics cardinalities, BOW was adopted as
the image representation of the remaining experiments.

3) Correlation matching: The next set of experiments
were designed to compare the different CM methods. These
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TABLE IV
CROSS-MODAL RETRIEVAL PERFORMANCE (MAP) ON THE VALIDATION SET USING DIFFERENT DISTANCE METRICS, FOR BOTH TVGRAZ AND

WIKIPEDIA. µp AND µq ARE THE SAMPLE AVERAGES FOR p AND q.

TVGraz Wikipedia
Experiment measure d(p, q) img query txt query avg img query txt query avg

CM

ℓ1
∑

i |pi − qi| 0.376 0.418 0.397 0.193 0.234 0.214
ℓ2

∑
i(pi − qi)

2 0.391 0.444 0.417 0.199 0.243 0.221

NC pT q
||p|| ||q|| 0.498 0.476 0.487 0.288 0.239 0.263

NCc
(p−µp)

T (q−µq)

||p−µp|| ||q−µq||
0.486 0.462 0.474 0.287 0.239 0.263

SM

KL
∑

i pi log
pi
qi

0.296 0.546 0.421 0.188 0.276 0.232
ℓ1

∑
i |pi − qi| 0.412 0.548 0.480 0.232 0.276 0.254

ℓ2
∑

i(pi − qi)
2 0.380 0.550 0.465 0.211 0.278 0.245

NC pT q
||p|| ||q|| 0.533 0.560 0.546 0.315 0.278 0.296

NCc
(p−µp)

T (q−µq)

||p−µp|| ||q−µq||
0.579 0.556 0.568 0.354 0.272 0.313

SCM

KL
∑

i pi log
pi
qi

0.576 0.636 0.606 0.287 0.282 0.285
ℓ1

∑
i |pi − qi| 0.637 0.645 0.641 0.329 0.286 0.308

ℓ2
∑

i(pi − qi)
2 0.614 0.63 0.622 0.307 0.286 0.296

NC pT q
||p|| ||q|| 0.669 0.646 0.658 0.375 0.288 0.330

NCc
(p−µp)

T (q−µq)

||p−µp|| ||q−µq||
0.678 0.641 0.660 0.388 0.285 0.337
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Fig. 8. MAP performance (cross-modal retrieval, validation set) of SCM using two image models: BOW (flat lines) and LDA.

methods have different degrees of freedom and thus require
different amounts of parameter tuning. The most flexible
representation is KCCA, whose performance varies with
the choice of kernel and regularization parameter κ of (5).
We started by comparing various kernel combinations. Best
results were achieved with the combination of a chi-square
radial basis function kernel3 for images and a histogram
intersection kernel [3], [43] for text. Combinations in-
volving other kernels (e.g., linear, Gaussian, exponential)
achieved inferior validation set performance. Regarding
regularization, best results were obtained with κ = 10%
on TVGraz and κ = 50% on Wikipedia. The need for a
stronger regularizer in Wikipedia suggests that there are
more spurious correlations on this dataset, which could lead
to over-fitting. This is sensible, given the greater diversity
and abstraction of the concepts in this dataset.

For CCA (CFA), the only free parameter is the number

3K(x, y) = exp

(
d
χ2 (x, y)

γ

)
where dχ2 (x, y) is the chi-square

distance between x and y and γ the average chi-square distance among
training points.

TABLE V
CM: CROSS-MODAL MAP

TVGRAZ (VALIDATION SET).

Experiment Image Text Average Average
Query Query Gain

KCCA 0.486 0.462 0.474 -
CCA 0.284 0.254 0.269 76%
CFA 0.195 0.179 0.187 153%

TABLE VI
CM: CROSS-MODAL MAP ON

WIKIPEDIA (VALIDATION SET).

Experiment Image Text Average Average
Query Query Gain

KCCA 0.287 0.239 0.263 -
CCA 0.210 0.174 0.192 37%
CFA 0.195 0.156 0.176 50%

of canonical components (dimensionality of the shared
space) used for both image and text representation. A grid
search was performed to find the parameter of best retrieval
performance under each method. In all cases, KCCA yields
top performance. On TVGraz, the average gain (for text and
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image queries) is 153% over CFA and 76% over CCA. On
Wikipedia, the gain over CFA is 50% and over CCA 37%.
KCCA was chosen to implement the correlation hypothesis
in the remaining experiments.

4) Overall optimization: The experiments above resulted
in the selection of a cross-modal retrieval architecture com-
bining KCCA to learn correlation subspaces, the centered
normalized correlation distance measure, and a combi-
nation of the BOW representation for images and LDA
representation for text. A final set of parameter tuning
experiments was conducted to select the codebook size
for image representation, the number of topics for text
representation and the number of KCCA components. This
was based on a grid search over the parameter space, on
the validation set, which was repeated for CM, SM, and
SCM.

As an example, Figure 9 presents the retrieval perfor-
mance achieved with different parameter settings on the CM
experiments. Note that the best MAP scores are obtained
with a small number of KCCA components (< 10). For the
image representation, best performance was achieved with
codebooks of 4, 096 visual words, on both datasets. For
text, 200 topics performed the best on TVGraz and 20 on
Wikipedia. These results, and those of similar experiments
for SM and SCM, are summarized in table VII. Note that
in the test set experiments of Section VII, the number of
KCCA components of Table VII is scaled by the ratio be-
tween the numbers of training points of the test experiments
(Tables II and III) and that of the validation experiments
(Section V-B), so that a comparable fraction of correlation
is preserved after dimensionality reduction4.

VII. TESTING THE FUNDAMENTAL HYPOTHESES

TABLE VIII
CROSS-MODAL MAP ON TVGRAZ

(TEST SET)

Experiment Image Text Average Average
Query Query Gain

SCM 0.693 0.696 0.694 -
SM 0.625 0.618 0.622 11.6%
CM 0.507 0.486 0.497 39.6%

Random 0.114 0.114 0.114 509%
TABLE IX

CROSS-MODAL MAP ON
WIKIPEDIA (TEST SET)

Experiment Image Text Average Average
Query Query Gain

SCM 0.372 0.268 0.320 -
SM 0.362 0.252 0.307 4.2%
CM 0.282 0.225 0.253 26.5%

Random 0.119 0.119 0.119 170%

4KCCA seeks directions of maximum correlation in
span{ϕI(I1), . . . , ϕI(I|D|)} and span{ϕT (T1), . . . , ϕT (T|D|)},
where |D| is the training set size. This is larger for test than for
validation experiments (2, 173 v.s. 1, 738 on Wikipedia and 1, 558 v.s.
1, 245 on TVGraz). Hence, in average, a KCCA component will explain
less correlation in the test than in the validation experiments. It follows
that a larger number of KCCA components are needed to capture the
same fraction of the total correlation.

In this section, we compare the performance of CM,
SM, and SCM on the test set. In all cases the parameter
configurations are those that achieved best cross-validation
performance in the previous section. Table VIII compares
the MAP scores of cross-modal retrieval — text-to-image,
image-to-text, and their average — using CM, SM and
SCM, on TVGraz, to chance-level performance5. Two
distinct observations can be made from the table. First,
it provides evidence in support of the two hypotheses of
Section III-C. Both joint dimensionality reduction (CM)
and semantic abstraction (SM) are beneficial for multi-
modal modeling, leading to a non-trivial improvement over
chance-level performance. For example, in TVGraz, CM
achieves an average MAP score of 0.497, over four times
the random retrieval performance of 0.114. SM yields an
even greater improvement, attaining a MAP score of 0.622.
Second, combining correlation modeling with semantic ab-
straction (SCM) is desirable, leading to higher MAP scores.
On TVGraz, SCM improves about 12% over SM and 40%
over CM, achieving an average MAP score of 0.694. This
suggests that the contributions of cross-modal correlation
and semantic abstraction are complementary: not only there
is an independent benefit to both correlation modeling and
abstraction, but the best performance is achieved when the
two hypothesis are combined. The gains hold for both cross-
modal retrieval tasks, i.e. image and text queries.

The corresponding results on Wikipedia are reported
in Table IX, where similar conclusions can be drawn —
both SM and CM perform far above chance level and
their combination yields further improvements. However,
the improvement of SCM over SM is less substantial than
in TVGraz. In fact, the retrieval performances on Wikipedia
are generally lower than those on TVGraz. As discussed in
Section V-A, this is likely due to the broader scope of the
Wikipedia categories. In this dataset, a significant fraction
of documents could be classified into multiple categories,
making the data harder to model. This explanation is
supported by the confusion matrices of Figure 10. These
were built by assigning each text and image query to the
class of highest MAP in the raking produced by SCM6.
Note, for example, the significant confusion between the
categories “Architecture” and “Places”, or “Royalty” and
“Warfare”.

Figure 10 presents PR curves of cross-modal retrieval
with CM, SM and SCM. All methods yield non trivial preci-
sion improvements, at all levels of recall, when compared to
the random baseline. On TVGraz, SM has higher precision
than CM, and SCM has higher precision than SM, at all
levels of recall. On Wikipedia, SCM improves over CM, at
all levels of recall, but the improvement over SM is small.
Figure 11 shows the MAP scores achieved per category
by all approaches. SCM has a significantly higher MAP
than CM and SM on all classes of TVGraz, and is either
comparable or better than CM and SM on the majority of

5Random documents returned in response to the query.
6Note that this is not ideal for classification, since the MAP is computed

over a ranking of the test set.
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Fig. 9. Cross-modal MAP of CM on TVGraz and Wikipedia (validation set), as a function of (a) number of image codewords, (b) number of text
LDA topics, and (c) number of KCCA components.

TABLE VII
BEST PARAMETERS SETTINGS FOR CM, SM AND SCM, ON BOTH TVGRAZ AND WIKIPEDIA.

CM SM SCM

MAP image query / text query 0.49 / 0.46 0.59 / 0.56 0.68 / 0.64

TVGrazBOW no. of codewords 4096
LDA no. of topics 200 100 400

KCCA no. of components 8 - 1125

MAP image query / text query 0.29 / 0.24 0.35 / 0.27 0.39 / 0.29

WikipediaBOW no. of codewords 4096
LDA no. of topics 20 600 200

KCCA no. of components 10 - 38

classes of Wikipedia.
Figure 12 presents two examples of text queries, by

SCM, on TVGraz. In each case, the text query is shown
at the top, along with its probability vector πT and the
ground truth image. The top five image matches are shown
on the bottom, along with their probability vectors πI .
Note that SCM assigns these images the highest ranks
in the retrieved list because their semantic vectors (πI )
most closely match that of the text (πT ). This can be
verified by noting the common concentration of probability
mass around “Cactus” (first example), and “Butterfly” (sec-
ond example). Figure 13 presents similar examples from
Wikipedia. Finally, Figure 14 shows examples of image-to-
text retrieval. The queries are framed on the left column,
and the images associated with the four best text matches
are shown on the right.

VIII. CONCLUSION

The increasing availability of multimodal information
demands the development of novel representations for
content-based retrieval. In this work, we proposed models
applicable to the task of cross-modal retrieval. This entails
the retrieval of database entries from one content modality
in response to queries from another. While the emphasis
was on cross-modal retrieval of images and rich text, the
proposed models support many other content modalities. By
requiring representations that can generalize across modal-
ities, cross-modal retrieval establishes a suitable context
for the objective investigation of fundamental hypotheses
in multimedia modeling. We have considered two such
hypotheses, regarding the importance of low-level cross-

modal correlations and semantic abstraction in multimodal
content modeling.

The hypotheses were objectively tested by comparing
the performance of three new approaches to cross-modal
retrieval: 1) correlation matching, based on the correlation
hypothesis, 2) semantic matching, based on the abstraction
hypothesis, and 3) semantic correlation matching, based on
the combination of the two. All of these map objects from
different native spaces (e.g. rich text and images) to a pair of
isomorphic spaces, where a natural correspondence can be
established for cross-modal retrieval purposes. The retrieval
performance of the three solutions was extensively tested
on two datasets, “Wikipedia” and “TVGraz”, containing
documents that combine images and rich text. While the
two fundamental hypotheses were shown to hold for the
two datastets, where both CM and SM achieved significant
improvements over chance retrieval, SM achieved overall
better performance than CM. This implies stronger evidence
for the abstraction than for the correlation hypothesis. The
two hypotheses were also found to be complementary, with
SCM achieving the best results of all methods considered.
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Fig. 10. Confusion matrices on the test set, for both TVGraz (top) and Wikipedia (bottom). Rows refer to true categories, and columns to category
predictions. The more confusion on Wikipedia motivates the lower retrieval performance. PR curves for cross-modal retrieval using both text and image
queries.
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Fig. 11. Per category cross-modal MAP, on TVGraz and Wikipedia.
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A small cactus with thin spiny stems, seen against the sky and a low
hill in the background. In the high Mojave desert of western Arizona.
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On the Nature Trail behind the Bathabara Church, there are numerous
wild flowers and plants blooming, that attract a variety of insects, bees
and birds. Here a beautiful Butterfly is attracted to the blooms of the
Joe Pye Weed.
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Fig. 12. Two examples of text-based cross-modal retrieval, on TVGraz, using SCM. The query text, associated probability vector and ground truth
image are shown on the top. Retrieved images are presented at the bottom.
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Many seabirds are little studied and poorly known, due to living far out to sea and breeding in isolated colonies. However, some seabirds, particularly, the albatrosses and gulls, have
broken into popular consciousness. The albatrosses have been described as “the most legendary of birds”,Carboneras, C. (1992) “Family Diomedeidae (Albatrosses)” in “Handbook
of Birds of the World” Vol 1. Barcelona:Lynx Edicions, ISBN 84-87334-10-5 and have a variety of myths and legends associated with them, and today it is widely considered
unlucky to harm them, although the notion that sailors believed that is a myth Cocker, M., & Mabey, R., (2005) “Birds Britannica” London:Chatto & Windus, ISBN 0-7011-6907-9
which derives from Samuel Taylor Coleridge’s famous poem, “The Rime of the Ancient Mariner”, in which a sailor is punished for killing an albatross by having to wear its corpse
around his neck.
“Instead of the Cross the Albatross” “About my neck was hung”
Sailors did, however, consider it unlucky to touch a storm-petrel, especially one that has landed on the ship.Carboneras, C. (1992) “Family Hydrobatidae (Storm-petrels)” in “Handbook
of Birds of the World” Vol 1. Barcelona:Lynx Edicions, ISBN 84-87334-10-5
Gulls are one of the most commonly seen seabirds, given their use of human-made habitats (such as cities and dumps) and their often fearless nature. They therefore also have made
it into the popular consciousness - they have been used metaphorically, as in “Jonathan Livingston Seagull” by Richard Bach, or to denote a closeness to the sea, such as their use
in the “The Lord of the Rings” both in the insignia of Gondor and therefore Namenor (used in the design of the films), and to call Legolas to (and across) the sea. Other species
have also made an impact; pelicans have long been associated with mercy and altruism because of an early Western Christian myth that they split open their breast to feed their
starving chicks.
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Between October 1 and October 17, the Japanese delivered 15,000 troops to Guadalcanal, giving Hyakutake 20,000 total troops to employ for his planned offensive. Because of
the loss of their positions on the east side of the Matanikau, the Japanese decided that an attack on the U.S. defenses along the coast would be prohibitively difficult. Therefore,
Hyakutake decided that the main thrust of his planned attack would be from south of Henderson Field. His 2nd Division (augmented by troops from the 38th Infantry Division),
under Lieutenant General Masao Maruyama and comprising 7,000 soldiers in three infantry regiments of three battalions each was ordered to march through the jungle and attack the
American defences from the south near the east bank of the Lunga River.Shaw, “First Offensive”, p. 34, and Rottman, “Japanese Army”, p. 63. To distract the Americans from the
planned attack from the south, Hyakutake’s heavy artillery plus five battalions of infantry (about 2,900 men) from the 4th and 124th Infantry Regiments under the overall command of
Major General Tadashi Sumiyoshi were to attack the American defenses from the west along the coastal corridor.Rottman, “Japanese Army”, p. 61, Frank, “Guadalcanal”, p. 289340,
Hough, “Pearl Harbor to Guadalcanal”, p. 32230, Griffith, ”Battle for Guadalcanal”, p. 18687, Dull, ”Imperial Japanese Navy”, p. 22630, Morison, “Struggle for Guadalcanal”,
p. 14971. The Japanese troops delivered to Guadalcanal during this time comprised the entire 2nd (Sendai) Infantry Division, two battalions from the 38th Infantry Division, and
various artillery, tank, engineer, and other support units. Kawaguchi’s forces also included what remained of the 3rd Battalion, 124th Infantry Regiment which was originally part
of the 35th Infantry Brigade commanded by Kawaguchi during the Battle of Edson’s Ridge.
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Fig. 13. Two examples of text-based cross-modal retrieval, on Wikipedia, using SCM. The query text, associated probability vector and ground truth
image are shown on the top. Retrieved images are presented at the bottom.
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Query Image Images corresponding to top retrieved texts.

Fig. 14. Image-to-text retrieval on TVGraz (top two rows) and Wikipedia (remaining two). Query images are framed on the far-left column. The four
most relevant texts, represented by their ground truth images, are shown on the remaining columns.


